Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2015): 20232172, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38290541

RESUMO

The evolution of flight is a rare event in vertebrate history, and one that demands functional integration across multiple anatomical/physiological systems. The neuroanatomical basis for such integration and the role that brain evolution assumes in behavioural transformations remain poorly understood. We make progress by (i) generating a positron emission tomography (PET)-based map of brain activity for pigeons during rest and flight, (ii) using these maps in a functional analysis of the brain during flight, and (iii) interpreting these data within a macroevolutionary context shaped by non-avian dinosaurs. Although neural activity is generally conserved from rest to flight, we found significant increases in the cerebellum as a whole and optic flow pathways. Conserved activity suggests processing of self-movement and image stabilization are critical when a bird takes to the air, while increased visual and cerebellar activity reflects the importance of integrating multimodal sensory information for flight-related movements. A derived cerebellar capability likely arose at the base of maniraptoran dinosaurs, where volumetric expansion and possible folding directly preceded paravian flight. These data represent an important step toward establishing how the brain of modern birds supports their unique behavioural repertoire and provide novel insights into the neurobiology of the bird-like dinosaurs that first achieved powered flight.


Assuntos
Columbidae , Dinossauros , Animais , Evolução Biológica , Fósseis , Encéfalo/fisiologia , Dinossauros/anatomia & histologia , Filogenia , Voo Animal
3.
PeerJ ; 11: e16327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025762

RESUMO

Tooth-marked bones provide important evidence for feeding choices made by extinct carnivorous animals. In the case of the dinosaurs, most bite traces are attributed to the large and robust osteophagous tyrannosaurs, but those of other large carnivores remain underreported. Here we report on an extensive survey of the literature and some fossil collections cataloging a large number of sauropod bones (68) from the Upper Jurassic Morrison Formation of the USA that bear bite traces that can be attributed to theropods. We find that such bites on large sauropods, although less common than in tyrannosaur-dominated faunas, are known in large numbers from the Morrison Formation, and that none of the observed traces showed evidence of healing. The presence of tooth wear in non-tyrannosaur theropods further shows that they were biting into bone, but it remains difficult to assign individual bite traces to theropod taxa in the presence of multiple credible candidate biters. The widespread occurrence of bite traces without evidence of perimortem bites or healed bite traces, and of theropod tooth wear in Morrison Formation taxa suggests preferential feeding by theropods on juvenile sauropods, and likely scavenging of large-sized sauropod carcasses.


Assuntos
Dinossauros , Desgaste dos Dentes , Dente , Animais , Dinossauros/anatomia & histologia , Osso e Ossos , Fósseis
5.
Commun Biol ; 6(1): 152, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792659

RESUMO

A voice box (larynx) is unique for tetrapods and plays functional roles in respiration, airway protection, and vocalization. However, in birds and other reptiles, the larynx fossil is extremely rare, and the evolution of this structure remains largely unknown. Here we report the fossil larynx found in non-avian dinosaurs from ankylosaur Pinacosaurus grangeri. The larynx of Pinacosaurus is composed of the cricoid and arytenoid like non-avian reptiles, but specialized with the firm and kinetic cricoid-arytenoid joint, prominent arytenoid process, long arytenoid, and enlarged cricoid, as a possible vocal modifier like birds rather than vocal source like non-avian reptiles. Although bird-unique vocal source (syrinx) have never been reported in non-avian dinosaurs, Pinacosaurus could have employed bird-like vocalization with the bird-like large, kinetic larynx. This oldest laryngeal fossil from the Cretaceous dinosaur provides the first step for understanding the vocal evolution in non-avian dinosaurs toward birds.


Assuntos
Dinossauros , Laringe , Animais , Evolução Biológica , Aves , Répteis , Traqueia
6.
Proc Biol Sci ; 289(1984): 20220740, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36196539

RESUMO

Significant evolutionary shifts in locomotor behaviour often involve comparatively subtle anatomical transitions. For dinosaurian and avian evolution, medial overhang of the proximal femur has been central to discussions. However, there is an apparent conflict with regard to the evolutionary origin of the dinosaurian femoral head, with neontological and palaeontological data suggesting seemingly incongruent hypotheses. To reconcile this, we reconstructed the evolutionary history of morphogenesis of the proximal end of the femur from early archosaurs to crown birds. Embryological comparison of living archosaurs (crocodylians and birds) suggests the acquisition of the greater overhang of the femoral head in dinosaurs results from additional growth of the proximal end in the medial-ward direction. On the other hand, the fossil record suggests that this overhang was acquired by torsion of the proximal end, which projected in a more rostral direction ancestrally. We reconcile this apparent conflict by inferring that the medial overhang of the dinosaur femoral head was initially acquired by torsion, which was then superseded by mediad growth. Details of anatomical shifts in fossil forms support this hypothesis, and their biomechanical implications are congruent with the general consensus regarding broader morpho-functional evolution on the avian stem.


Assuntos
Dinossauros , Cabeça do Fêmur , Animais , Evolução Biológica , Aves , Dinossauros/anatomia & histologia , Fósseis , Morfogênese , Filogenia
7.
Sci Rep ; 12(1): 17321, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243889

RESUMO

Intraspecific variation in growth trajectories provides a fundamental source of variation upon which natural selection acts. Recent work hints that early dinosaurs possessed elevated levels of such variation compared to other archosaurs, but comprehensive data uniting body size, bone histology, and morphological variation from a stratigraphically constrained early dinosaur population are needed to test this hypothesis. The Triassic theropod Coelophysis bauri, known from a bonebed preserving a single population of coeval individuals, provides an exceptional system to assess whether highly variable growth patterns were present near the origin of Dinosauria. Twenty-four histologically sampled individuals were less than a year to at least four years old and confirm the right-skewed age distribution of the Coelophysis assemblage. Poor correlations among size, age, and morphological maturity strongly support the presence of unique, highly variable growth trajectories in early dinosaurs relative to coeval archosaurs and their living kin.


Assuntos
Dinossauros , Animais , Evolução Biológica , Tamanho Corporal , Dinossauros/anatomia & histologia , Fósseis , Filogenia
9.
Nature ; 608(7922): 346-352, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896745

RESUMO

Living birds (Aves) have bodies substantially modified from the ancestral reptilian condition. The avian pelvis in particular experienced major changes during the transition from early archosaurs to living birds1,2. This stepwise transformation is well documented by an excellent fossil record2-4; however, the ontogenetic alterations that underly it are less well understood. We used embryological imaging techniques to examine the morphogenesis of avian pelvic tissues in three dimensions, allowing direct comparison with the fossil record. Many ancestral dinosaurian features2 (for example, a forward-facing pubis, short ilium and pubic 'boot') are transiently present in the early morphogenesis of birds and arrive at their typical 'avian' form after transitioning through a prenatal developmental sequence that mirrors the phylogenetic sequence of character acquisition. We demonstrate quantitatively that avian pelvic ontogeny parallels the non-avian dinosaur-to-bird transition and provide evidence for phenotypic covariance within the pelvis that is conserved across Archosauria. The presence of ancestral states in avian embryos may stem from this conserved covariant relationship. In sum, our data provide evidence that the avian pelvis, whose early development has been little studied5-7, evolved through terminal addition-a mechanism8-10 whereby new apomorphic states are added to the end of a developmental sequence, resulting in expression8,11 of ancestral character states earlier in that sequence. The phenotypic integration we detected suggests a previously unrecognized mechanism for terminal addition and hints that retention of ancestral states in development is common during evolutionary transitions.


Assuntos
Aves , Dinossauros , Desenvolvimento Embrionário , Fósseis , Pelve , Filogenia , Animais , Aves/anatomia & histologia , Aves/classificação , Aves/embriologia , Dinossauros/anatomia & histologia , Dinossauros/embriologia , Imageamento Tridimensional , Pelve/anatomia & histologia , Pelve/embriologia
10.
Science ; 376(6600): eabl8181, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35737783

RESUMO

David et al. claim that vestibular shape does not reflect function and that we did not use phylogenetic inference methods in our primary analyses. We show that their claims are countered by comparative and direct experimental evidence from across Vertebrata and that their models are empirically unverified. We did use phylogenetic methods to test our hypotheses. Moreover, their phylogenetic correction attempts are methodologically inappropriate.


Assuntos
Evolução Biológica , Aves , Dinossauros , Locomoção , Canais Semicirculares , Vocalização Animal , Animais , Aves/anatomia & histologia , Aves/fisiologia , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Filogenia , Canais Semicirculares/anatomia & histologia
11.
Cell Rep ; 39(5): 110771, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508134

RESUMO

We performed a comparative analysis of human and 12 non-human primates to identify sequence variations in known cancer genes. We identified 395 human-specific fixed non-silent substitutions that emerged during evolution of human. Using bioinformatics analyses for functional consequences, we identified a number of substitutions that are predicted to alter protein function; one of these mutations is located at the most evolutionarily conserved domain of human BRCA2.


Assuntos
Pan troglodytes , Primatas , Animais , Proteína BRCA2/genética , Evolução Molecular , Humanos , Mutação/genética , Pan troglodytes/genética , Proteínas/metabolismo
12.
Nature ; 606(7914): 522-526, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614213

RESUMO

Birds and mammals independently evolved the highest metabolic rates among living animals1. Their metabolism generates heat that enables active thermoregulation1, shaping the ecological niches they can occupy and their adaptability to environmental change2. The metabolic performance of birds, which exceeds that of mammals, is thought to have evolved along their stem lineage3-10. However, there is no proxy that enables the direct reconstruction of metabolic rates from fossils. Here we use in situ Raman and Fourier-transform infrared spectroscopy to quantify the in vivo accumulation of metabolic lipoxidation signals in modern and fossil amniote bones. We observe no correlation between atmospheric oxygen concentrations11 and metabolic rates. Inferred ancestral states reveal that the metabolic rates consistent with endothermy evolved independently in mammals and plesiosaurs, and are ancestral to ornithodirans, with increasing rates along the avian lineage. High metabolic rates were acquired in pterosaurs, ornithischians, sauropods and theropods well before the advent of energetically costly adaptations, such as flight in birds. Although they had higher metabolic rates ancestrally, ornithischians reduced their metabolic abilities towards ectothermy. The physiological activities of such ectotherms were dependent on environmental and behavioural thermoregulation12, in contrast to the active lifestyles of endotherms1. Giant sauropods and theropods were not gigantothermic9,10, but true endotherms. Endothermy in many Late Cretaceous taxa, in addition to crown mammals and birds, suggests that attributes other than metabolism determined their fate during the terminal Cretaceous mass extinction.


Assuntos
Aves , Dinossauros , Metabolismo Energético , Fósseis , Filogenia , Animais , Aves/metabolismo , Osso e Ossos/metabolismo , Dinossauros/anatomia & histologia , Dinossauros/metabolismo
13.
Nature ; 603(7903): 852-857, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322229

RESUMO

Secondary aquatic adaptations evolved independently more than 30 times from terrestrial vertebrate ancestors1,2. For decades, non-avian dinosaurs were believed to be an exception to this pattern. Only a few species have been hypothesized to be partly or predominantly aquatic3-11. However, these hypotheses remain controversial12,13, largely owing to the difficulty of identifying unambiguous anatomical adaptations for aquatic habits in extinct animals. Here we demonstrate that the relationship between bone density and aquatic ecologies across extant amniotes provides a reliable inference of aquatic habits in extinct species. We use this approach to evaluate the distribution of aquatic adaptations among non-avian dinosaurs. We find strong support for aquatic habits in spinosaurids, associated with a marked increase in bone density, which precedes the evolution of more conspicuous anatomical modifications, a pattern also observed in other aquatic reptiles and mammals14-16. Spinosaurids are revealed to be aquatic specialists with surprising ecological disparity, including subaqueous foraging behaviour in Spinosaurus and Baryonyx, and non-diving habits in Suchomimus. Adaptation to aquatic environments appeared in spinosaurids during the Early Cretaceous, following their divergence from other tetanuran theropods during the Early Jurassic17.


Assuntos
Dinossauros , Adaptação Fisiológica , Animais , Evolução Biológica , Carnivoridade , Dinossauros/anatomia & histologia , Fósseis , Mamíferos , Filogenia
14.
Ecol Evol ; 11(17): 11689-11699, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522333

RESUMO

The construction of morphological character matrices is central to paleontological systematic study, which extracts paleontological information from fossils. Although the word information has been repeatedly mentioned in a wide array of paleontological systematic studies, its meaning has rarely been clarified nor specifically defined. It is important, however, to establish a standard to measure paleontological information because fossils are hardly complete, rendering the recognition of homologous and homoplastic structures difficult. Here, based on information theory, we show the deep connections between paleontological systematic study and communication system engineering. Information is defined as the decrease of uncertainty and it is the information in morphological characters that allows distinguishing operational taxonomic units (OTUs) and reconstructing evolutionary history. We propose that concepts in communication system engineering such as source coding and channel coding, correspond to the construction of diagnostic features and the entire character matrices in paleontological studies. The two coding strategies should be distinguished following typical communication system engineering, because they serve dual purposes. With character matrices from six different vertebrate groups, we analyzed their information properties including source entropy, mutual information, and channel capacity. Estimation of channel capacity shows character saturation of all matrices in transmitting paleontological information, indicating that, due to the presence of noise, oversampling characters not only increases the burden in character scoring, but also may decrease quality of matrices. We further test the use of information entropy, which measures how informative a variable is, as a character weighting criterion in parsimony-based systematic studies. The results show high consistency with existing knowledge with both good resolution and interpretability.

15.
Sci Adv ; 7(31)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34330706

RESUMO

Birds today are the most diverse clade of terrestrial vertebrates, and understanding why extant birds (Aves) alone among dinosaurs survived the Cretaceous-Paleogene mass extinction is crucial to reconstructing the history of life. Hypotheses proposed to explain this pattern demand identification of traits unique to Aves. However, this identification is complicated by a lack of data from non-avian birds. Here, we interrogate survivorship hypotheses using data from a new, nearly complete skull of Late Cretaceous (~70 million years) bird Ichthyornis and reassess shifts in bird body size across the Cretaceous-Paleogene boundary. Ichthyornis exhibited a wulst and segmented palate, previously proposed to have arisen within extant birds. The origin of Aves is marked by larger, reshaped brains indicating selection for relatively large telencephala and eyes but not by uniquely small body size. Sensory system differences, potentially linked to these shifts, may help explain avian survivorship relative to other dinosaurs.


Assuntos
Dinossauros , Animais , Evolução Biológica , Aves , Encéfalo , Dinossauros/anatomia & histologia , Extinção Biológica , Fósseis , Filogenia , Crânio/anatomia & histologia
16.
Elife ; 102021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34227464

RESUMO

How do large and unique brains evolve? Historically, comparative neuroanatomical studies have attributed the evolutionary genesis of highly encephalized brains to deviations along, as well as from, conserved scaling relationships among brain regions. However, the relative contributions of these concerted (integrated) and mosaic (modular) processes as drivers of brain evolution remain unclear, especially in non-mammalian groups. While proportional brain sizes have been the predominant metric used to characterize brain morphology to date, we perform a high-density geometric morphometric analysis on the encephalized brains of crown birds (Neornithes or Aves) compared to their stem taxa-the non-avialan coelurosaurian dinosaurs and Archaeopteryx. When analyzed together with developmental neuroanatomical data of model archosaurs (Gallus, Alligator), crown birds exhibit a distinct allometric relationship that dictates their brain evolution and development. Furthermore, analyses by neuroanatomical regions reveal that the acquisition of this derived shape-to-size scaling relationship occurred in a mosaic pattern, where the avian-grade optic lobe and cerebellum evolved first among non-avialan dinosaurs, followed by major changes to the evolutionary and developmental dynamics of cerebrum shape after the origin of Avialae. Notably, the brain of crown birds is a more integrated structure than non-avialan archosaurs, implying that diversification of brain morphologies within Neornithes proceeded in a more coordinated manner, perhaps due to spatial constraints and abbreviated growth period. Collectively, these patterns demonstrate a plurality in evolutionary processes that generate encephalized brains in archosaurs and across vertebrates.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Evolução Biológica , Encéfalo/anatomia & histologia , Galinhas/anatomia & histologia , Jacarés e Crocodilos/crescimento & desenvolvimento , Animais , Encéfalo/crescimento & desenvolvimento , Galinhas/crescimento & desenvolvimento , Masculino
17.
Science ; 372(6542): 601-609, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958471

RESUMO

Reptiles, including birds, exhibit a range of behaviorally relevant adaptations that are reflected in changes to the structure of the inner ear. These adaptations include the capacity for flight and sensitivity to high-frequency sound. We used three-dimensional morphometric analyses of a large sample of extant and extinct reptiles to investigate inner ear correlates of locomotor ability and hearing acuity. Statistical analyses revealed three vestibular morphotypes, best explained by three locomotor categories-quadrupeds, bipeds and simple fliers (including bipedal nonavialan dinosaurs), and high-maneuverability fliers. Troodontids fall with Archaeopteryx among the extant low-maneuverability fliers. Analyses of cochlear shape revealed a single instance of elongation, on the stem of Archosauria. We suggest that this transformation coincided with the origin of both high-pitched juvenile location, alarm, and hatching-synchronization calls and adult responses to them.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Orelha Interna/anatomia & histologia , Locomoção , Vocalização Animal/fisiologia , Animais , Aves/anatomia & histologia , Aves/classificação , Aves/fisiologia , Dinossauros/classificação , Voo Animal/fisiologia , Audição/fisiologia , Filogenia
18.
Science ; 372(6542): 610-613, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958472

RESUMO

Owls and nightbirds are nocturnal hunters of active prey that combine visual and hearing adaptations to overcome limits on sensory performance in low light. Such sensory innovations are unknown in nonavialan theropod dinosaurs and are poorly characterized on the line that leads to birds. We investigate morphofunctional proxies of vision and hearing in living and extinct theropods and demonstrate deep evolutionary divergences of sensory modalities. Nocturnal predation evolved early in the nonavialan lineage Alvarezsauroidea, signaled by extreme low-light vision and increases in hearing sensitivity. The Late Cretaceous alvarezsauroid Shuvuuia deserti had even further specialized hearing acuity, rivaling that of today's barn owl. This combination of sensory adaptations evolved independently in dinosaurs long before the modern bird radiation and provides a notable example of convergence between dinosaurs and mammals.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Ducto Coclear/anatomia & histologia , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Audição , Visão Noturna , Animais , Dinossauros/líquido cefalorraquidiano , Filogenia , Estrigiformes/anatomia & histologia , Estrigiformes/fisiologia
19.
Curr Biol ; 31(8): R372-R373, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33905690

RESUMO

In the recent study in Current Biology by Pei and colleagues1, we used two proxies - wing loading and specific lift - to reconstruct powered flight potential across the vaned feathered fossil pennaraptorans. The results recovered multiple origins of powered flight. We respectfully disagree with the criticism raised by Serrano and Chiappe2 that wing loading and specific lift, used in sequence, fail to discriminate between powered flight and gliding. We will explain this in reference to our original conservative approach.


Assuntos
Fósseis , Esportes
20.
Commun Biol ; 3(1): 499, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913206

RESUMO

Ceratopsia is a diverse dinosaur clade from the Middle Jurassic to Late Cretaceous with early diversification in East Asia. However, the phylogeny of basal ceratopsians remains unclear. Here we report a new basal neoceratopsian dinosaur Beg tse based on a partial skull from Baruunbayan, Ömnögovi aimag, Mongolia. Beg is diagnosed by a unique combination of primitive and derived characters including a primitively deep premaxilla with four premaxillary teeth, a trapezoidal antorbital fossa with a poorly delineated anterior margin, very short dentary with an expanded and shallow groove on lateral surface, the derived presence of a robust jugal having a foramen on its anteromedial surface, and five equally spaced tubercles on the lateral ridge of the surangular. This is to our knowledge the earliest known occurrence of basal neoceratopsian in Mongolia, where this group was previously only known from Late Cretaceous strata. Phylogenetic analysis indicates that it is sister to all other neoceratopsian dinosaurs.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis/anatomia & histologia , Animais , Dinossauros/genética , Dinossauros/fisiologia , Mongólia , Filogenia , Crânio/anatomia & histologia , Dente/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...